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Collectivity embedded in complex spectra of finite interacting Fermi systems: Nuclear example
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1Institut für Kernphysik, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany
2Institute of Nuclear Physics, PL-31-342 Krako´w, Poland

3Faculty of Humanities and Social Sciences, Iwate University, Ueda 3-18-34, Morioka 020, Japan
~Received 24 October 1997!

The mechanism of collectivity coexisting with chaos in a finite system of strongly interacting fermions is
investigated. The complex spectra are represented in the basis of two-particle two-hole states describing the
nuclear double-charge exchange modes in48Ca. An example ofJp502 excitations shows that the residual
interaction, which generically implies chaotic behavior, under certain specific and well identified conditions
may create strong transitions, even much stronger than those corresponding to a pure mean-field picture. Such
an effect results from correlations among the off-diagonal matrix elements, and is connected with locally
reduced density of states and a local minimum in the information entropy.@S1063-651X~98!11503-9#

PACS number~s!: 05.45.1b, 05.30.Fk, 21.60.Ev, 24.30.Cz
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I. INTRODUCTION

The concept of the random matrix theory~RMT! @1#
proves very fruitful in approaching complex quantum sy
tems and in addressing the question of how classical ch
manifests itself on the quantum level. Chaos is essential
generic property of complex systems such as atomic nu
@2#, many electron atoms@3#, molecules@4#, or disordered
mesoscopic systems@5# and this finds evidence in a broa
applicability of RMT to describe level fluctuations@6#. Even
many aspects of quantum chromodynamics are consis
with chiral RMT @7#. Similarly, however, as in most phys
cally interesting cases where classical chaos is not just a
billiard-type chaos, the pure RMT cannot account for the f
richness of quantum phenomena connected with comple
As an example one can mention the sign correlations@8# for
parity nonconserving effects@9# in compound nuclei, even
though it was the physics of compound nuclei that
Wigner @10# to postulate the Gaussian orthogonal ensem
~GOE! of random matrices as an appropriate global fram
Explicit microscopic approaches in terms of the full sh
model diagonalization, either in nuclear@2,11# or atomic
physics@3#, show perfect agreement with GOE when looki
at the local level fluctations measured in terms of the nea
neighbor spacing distribution and theD3 statistics, but sig-
nificant deviations take place on the level of wave functio
This originates from the two-body nature of interactio
which reduces the number of independent parameters
preserves certain correlation among the matrix elements
order to account for this type of correlation a two-body ra
dom interaction model has been introduced@12# and its sta-
tistical properties investigated in detail@13#. Still, however,
such models may not properly account for correlations t
originate from the geometry of a problem and that, in so
cases, may turn out to be significant.

Another characteristic connected with complexity, whi
is even more interesting and important from the practi
point of view, is collectivity. It means a cooperation, an
thus the coupling between the different degrees of freed
in order to generate a coherent signal in response to an
571063-651X/98/57~4!/4016~7!/$15.00
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ternal perturbation. Consequently, even though the real
lectivity implies a highly ordered behavior it involves effec
beyond the mean field — the most regular part@14# of the
many-body Hamiltonian. At the same time the effects b
yond the mean field are responsible for the GOE fluctuat
properties. Therefore, in a sense, these two seemingly
tradictory phenomena, chaos and collectivity, may have
go in parallel. Also on the classical level collectivity is
nonlinear cooperative effect that results from the coupl
between different degrees of freedom.

In general, the shell model type approaches are base
diagonalization of the full many-body Hamiltonian in th
basis spanned by all possiblen-particle–n-hole (np-nh)
configurations generated by the mean field. For practical
sons, especially when large energy intervals are involved
for instance, in the case of nuclear giant resonances,
truncates this hierarchy of configurations up to 2p2h @15#.
Interestingly, due to a sufficiently large density of states re
tive to the strength of the residual interaction@16#, local level
fluctuations characteristic of GOE appear@17# to take place
for the nuclear Hamiltonian acting already in the space
2p2h states and this is a crucial element for an appropr
description of the giant resonance decay properties@18#. The

FIG. 1. Diagrammatic representation of the two-body mat
elements in the space 2p2h states with explicit indication of the
angular momentum coupling scheme. The consecutive terms re
sent hole-hole, particle-particle, and particle-hole interactions,
spectively.
4016 © 1998 The American Physical Society
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57 4017COLLECTIVITY EMBEDDED IN COMPLEX SPECTRA OF . . .
giant resonaces are, however, excited by one-body oper
that directly probe the 1p1h components of the nuclear wav
function. The 2p2h states only form the background whic
determines a decay law. There exist, however, very inter
ing physical processes, represented by two-body~two-
phonon! external operators, which directly couple the grou
state to the space of 2p2h states. In view of the above men
tioned local GOE fluctuations giving evidence for a sign
cant amount of chaotic dynamics already in the 2p2h space,
the question of a possible coherent response or collect
under such conditions is a very intriguing one and of inter
for many branches of physics.

II. MODEL

We start with the Hamiltonian that, in second quantiz
form, reads as
f
re
a

ro
or
u

on
th
lin

d

s

ors

t-

ty
t

d
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e iai
†ai1

1

4 (
i j ,kl

v i j ,klai
†aj

†alak . ~1!

The first term denotes the mean field while the second t
is the residual interaction with antisymmetrized matrix e
mentsv i j ,kl . Diagonalizing this Hamiltonian in the subspac
of 2p2h states,

u2&[ap1

† ap2

† ah2
ah1

u0&, ~2!

yields the eigenenergiesEn and the corresponding eigenve
tors un&5S2c2

nu2&. For realistic nuclear interactions the spe
tral fluctuations of$En% typically coincide with those of the
GOE @15#.

The general form of matrix elements for the two-bo
residual interactionV between 2p2h states is given by
Vp1p2h1h2 ,p
18p

28h
18h

28
5dp1p

18
dp2p

28
vh

18h
28h1h2

1dh1h
18
dh2h

28
vp1p2p

18p
28
1a~p1 ,p2!a~h1 ,h2!a~p18 ,p28!a~h18 ,h28!dp2p

28
dh2h

28
vp1h

18h1p
18
,

~3!
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wherea( i , j ) denotes the antisymmetrizer betweeni and j .
The consecutive terms in this expression are responsible
hole-hole, particle-particle, and particle-hole interactions,
spectively, while the remaining pair of states in each case
spectators represented by thed i j functions. These functions
set a significant fraction of the matrix elements to ze
which may lead to correlations. Figure 1 illustrates the c
responding structure in diagrammatical representation. F
ther correlations may originate from the fact that many n
zero matrix elements relate to each other only by
geometrical factors due to the angular momentum coup
algebra.

In response to an external fieldF̂a a state

uFa&[F̂au0&5(
n

^nuF̂au0&un& ~4!

is excited. The two-phonon operatorF̂a can be represente
as

F̂a5@ f̂ b ^ f̂ g#a , ~5!

where f̂ b and f̂ g denote the single-phonon operators who
quantum numbersb andg are coupled to forma. The state
uFa& determines the strength function

SFa
~E!5(

n
SFa

~n!d~E2En!, ~6!

where

SFa
~n!5 z^nuF̂au0& z2. ~7!

In the unperturbed basis of statesu2& the transition strength
SFa

(n) to the stateun& can be expressed as
or
-
re

,
-
r-
-
e
g

e

SFa
~n!5(

2
uc2

nu2z^2uF̂au0& z2

1 (
2Þ28

c2
n* c28

n ^0uF̂a
† u28&^2uF̂au0&

5SFa

d ~n!1SFa

od ~n!. ~8!

The second equality defines the diagonal@SFa

d (n)# and off-

diagonal@SFa

od (n)# contributions to the transition strength

energy En . The second component includes many mo
terms and it is this component that is potentially able
induce collectivity, i.e., a strong transition to energyEn .
Two elements are, however, required:~i! a stateun& must
involve sufficiently many expansion coefficientsc2

n over the

unperturbed statesu2& that carry the strength (^2uF̂au0&
Þ0) and this is equivalent to at least local mixing, but at t
same time~ii ! sign correlations among these expansion
efficients should take place so that the different terms do
cancel out.

Optimal circumstances for the second condition to be f
filled read:

c2
n;^0uF̂au2&. ~9!

This may occur if the interaction matrix elements can
represented by a sum of separable termsQn of the multipole-
multipole type:

Vi j ,kl5 (
n51

M

Qi j
n Qkl

n ~10!

with Qi j
n ;^ i u f̂ nu j &. The success of the Brown-Bolsterli sch

matic model@19# in indicating the mechanism of collectivity
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on the 1p1h level points to an approximate validity of suc
a representation and its formal justification comes from
multipole expansion of the residual interaction. The struct
of the Hamiltonian matrix in the 1p1h subspace is then usu
ally dominated by few multipoles. Collectivity can then b
viewed as an edge effect connected with the appearance
dominating component in the Hamiltonian matrix and t
rankM of this component is significantly lower~unity in the
case of the Brown-Bolsterli model! than the size of the ma
trix. This rank specifies a number of the prevailing sta
whose expansion coefficients predominantly are function
Qn. In general, on the 2p2h level a multipole structure of the
interaction enters the corresponding matrix elements i
more complicated way. However, due to the two-body nat
of the nuclear interaction, which reduces its 2p2h matrix
elements to combinations of the ones representing
particle-particle, hole-hole and particle-hole interactio
@15#, the separability may become effective also on the 2p2h
level although conditions are expected to be more restrict
On the other hand the 2p2h space offers many more unpe
turbed transitions to form a collective state and the net ef
may still appear significant.

For the quantitative discussion presented below
choose the48Ca nucleus, specify the mean-field part of t
Hamiltonian ~1! in terms of a local Woods-Saxon potenti
including the Coulomb interaction, and adopt the dens
dependent zero-range interaction of Ref.@20# as a residual
interaction ~after correcting for a misprint in the densit
functional: R051.16A1/3). Since we want to inspect th
higher energy region at least three mean field shells on b
sides of the Fermi surface have to be used to generate
unperturbed 2p2h states as a basis for diagonalization of t
full Hamiltonian ~1!. Typically, the number of such states
very large and this kind of calculation can be kept under
numerical control only for selected excitations of the low
multipolarity. Among various nuclear excitation mod
which can be considered in this context the double-cha
exchange~DCX! processes are of special interest. The
modes, excited in (p1,p2) reactions@21#, involve at least
two nucleons within the nucleus and give rise to a sharp p
at around 50 MeV in the forward cross section. They are t
located in the energy region of the high density of 2p2h
states, which points to the importance of coherence eff
among those states. Consequently, the present investig
may also appear helpful in studying the mechanism of D
reactions and in separating the suggested@22# dibaryon con-
tribution from the conventional effects@23#. For all these
reasons we perform a systematic study of the DCXJp502

states. Our model space then developsN52286 2p2h states.
There are still several possibilities of exciting such a doub
phonon mode represented by the operatorF̂a out of the two
single phononsf̂ b and f̂ g of opposite parity. For definitenes
we choose

f̂ b5rY1t2 ~11!

and

f̂ g5r 2@Y2^ s#11t2 . ~12!
e
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The first of these operators corresponds to the 1\v dipole
and the second to 2\v spin-quadrupole excitation. The re
sulting two-phonon mode thus operates on a level of 3\v
excitations. Formulas needed to express the angular mom
tum coupled form of the above one- and two-body operat
can be found, for instance, in the Appendix of Ref.@24#.

III. RESULTS AND DISCUSSION

The results of calculations are presented in Fig. 2. As
can see, including the residual interaction@part~b!# induces a
strong transition at 51.1 MeV. This transition is stronger
almost a factor of 2 than any of the unperturbed@part ~a!#
transitions even though it is shifted to a significantly high
(; 10 MeV! energy. This is also a very collective transitio
About 95% of the corresponding strength originates fro
SFa

od (n), as comparison between parts~b! and ~c! of Fig. 2

indicates. This whole effect is due to particle-hole type m
trix elements@Fig. 1~c!#. Discarding diagrams~a! and ~b!
produces no significant difference. The degree of mixing c
be quantified, for instance, in terms of the information e
tropy @25#

I ~n!52S i pi lnpi , pi5uci
nu2 ~13!

of an eigenvectorun& in the basis@part ~d!#. Interestingly, the
system finds preferential conditions for creating the m
collective state in the energy region of local minimum
I (n). Our following discussion is supposed to shed mo
light on this issue.

As shown in Fig. 3~a! our Hamiltonian matrix displays a
bandlike structure with spots of the significant matrix e
ments inside. This together with a nonuniform energy dis
bution ru(E) of the unperturbed 2p2h states@Fig. 3~b!#,
which is a trace of the shell structure of the single-parti
states, characteristic of many other mesoscopic systems@26#,
sizably suppresses the range of mixing and locally supp
conditions for the edge effect to occur in the energy region
the minimum inr(E). A comparison with Fig. 2~b! shows
that the collective state is located at about this region. Mo

FIG. 2. ~a! The unperturbed transition-strength distribution
48Ca for theJp502 DCX excitation involving the single-phonon
dipole and 2\v spin-quadrupole modes.~b! The same as~a! but
after including the residual interaction.~c! SFa

d components of the
transition strength as defined by Eq.~8! ~notice different scale!. ~d!
The information entropy of the statesun& in the unperturbed basis
The dashed line indicates the GOE limit@ ln(0.48N)#.
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57 4019COLLECTIVITY EMBEDDED IN COMPLEX SPECTRA OF . . .
over, the minimum survives diagonalization@rp(E) in Fig.
2~c!# and all the above features are consistent with the ef
tive band range@27#

~DEi !
25(

j
~Hii 2H j j !

2Hi j
2 Y (

iÞ j
Hi j

2 ~14!

shown in Fig. 2~d!.
Further quantification of the character of mixing betwe

the unperturbed states is documented in Fig. 4. The distr
tion P(H) of off-diagonal matrix elements~a! is not Gauss-
ian but of the following type:

P~H !5auHubexp~2uHu/c!. ~15!

This indicates the presence of the dominating multipo
multipole components in the interaction@2,3#. An interesting
feature is the asymmetry between the positive and nega
valued matrix elements@see parameters in the caption to F
4~a!#. The positive matrix elements are more abunda
which expresses further correlations among them and the
that the interaction is predominantly repulsive for the mo
considered. Significant reduction of dimensionality is a
indicated by the distribution of eigenvalues of the resid
interaction. As shown in part~b! of Fig. 4 the majority of
these eigenvalues is concentrated around zero and thus
stitute approximate zero modes of that part of the Ham
tonian. We also would like to note at this point, witho
showing the results explicitly, that similar analysis on t
1p1h level using appropriately larger model spaces~for bet-
ter statistics! shows an even larger fraction of such ze
modes. This is due to the fact that in the 1p1h space the
multipole-multipole structure of the interaction manifests
self in a more transparent way.

Appearance of a strong transition at certain energyEn
means that the structure of the Hamiltonian matrix of
residual interaction, at least locally at around that particu

FIG. 3. ~a! Structure of the Hamiltonian matrix for theJp

502 DCX states. The states are here labeled by energies, ord
in ascending order and the matrix elementsHik>0.1 are indicated
by the dots.~b! Density of the unperturbed 2p2h states.~c! Density
of states after the diagonalization.~d! Energy range of interaction
between the unperturbed states.
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energy, is governed by a component of the type as spec
by Eq.~10! with a small number of terms (M!N) including,
of course, the ones that coincide with an external field. I
pure case a structure like this causes an energy gap bet
the collective state and the remaining states. In the pre
case, of its only local nature, one expects a local minimum
the density of states in the vicinity of the collective sta
Indeed, as can be seen by a careful inspection of Fig.~b!
versus Fig. 3~c! any stronger transition is located in such
minimum whose range typically extends over an energy
terval of the order of 0.5 MeV. Even relatively weak trans
tions are asigned their own minima. Moreover, as we h
verified in certain selected cases, many other minima in
density of states that are not occupied by the above spec
transitions turn out to be filled in by the DCXJp502 tran-
sitions connected with other combinations of two on
phonon operators~for instance,f̂ b5r 2Y2t2 and f̂ g5r @Y1
^ s#22t2).

A reduction of the rank~real dimensionality! of the
Hamiltonian matrix evidenced above is also consistent w
the observed minimum in the information entropy@Fig.
2~d!#. Simply, in the relevant energy region there are few
free parameters and this sets additional constraints on
degree of mixing and thus on the amount of chaos. A
chaos related characteristics we take the spectral rigi
measured in terms of theD3 statistics@1#. We find this mea-
sure more appropriate for studying various local subtleties
mixing than the nearest neighbor spacing~NNS! distribution
because for a smaller number of states the latter sooner
comes contaminated by strong fluctuations. Indeed, the s

red

FIG. 4. ~a! Distribution of off-diagonal matrix elements betwee
the Jp502 DCX states~histogram!. The solid lines indicate fit in
terms of Eq. ~15! with the resulting parameters:a5676, b5
21.21, c50.69 ~left! and a5692, b521.22, c50.81 ~right!. ~b!
Density of states corresponding to the residual interaction par
the Hamitonian~1!.
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tral rigidity ~Fig. 5! detects differences in the level repulsio
inside the string of eigenvalues~i1! covering the first maxi-
mum in rp(u)(E) ~35.2–44.5 MeV, 400 states starting fro
n5351 up ton5750) and the one~i2! covering the mini-
mum and thus including the collective state~44.5–52.1
MeV, 400 states fromn5751 to n51150). The deviation
from GOE is more significant in i2, which, similarly asI (n),
signals a more regular dynamics in the vicinity of the colle
tive state (n51089).

Conditions corresponding to the actual Hamiltonian
not the most optimal ones from the point of view of th
collectivity of our Jp502 DCX excitation. By multiplying
the residual interaction by a factor ofg50.7 we obtain a
picture as shown in Fig. 6. Now the transition located at 4

FIG. 5. Spectral rigidityD3(L) for eigenvalues from the two
400-state long intervals:n53512750 ~i1! andn575121150 ~i2!.
The long-dashed line corresponds to Poisson level distribution
the short-dashed line to GOE.

FIG. 6. Transition-strength distribution, density of states and
information entropy for the same excitation as in Fig. 1 but
residual interaction is now multiplied by a factor ofg50.35~upper
part!, g50.7 ~middle part!, andg52.5 ~lower part!, respectively.
-

e

6

MeV is another factor of 2 stronger than before and, aga
all significant transitions are situated in the local minima
r(E) and in the overall minimum of the information entrop
A too severe decrease ofg will eventually bring all the tran-
sitions to their mean-field values. This transition is, howev
not just linear. Here we seem to be facing a competition
the two elements. One is the residual interaction that mus
sufficiently strong to correlate many states but the other
is a condition for the edge effect to occur. As a result, ev
for g50.35 we still obtain very strong transitions, apparen
due to the fact that the interaction strength is such that
unperturbed transitions are moved just to the absolute m
mum in r(E).

The range of values of a multiplication factor that pr
duces this kind of picture is rather narrow and this feature
collectivity resembles a classical phenomenon of the stoc
tic resonance@28#. It is relatively easy to completely destro
such strong transitions. By multiplying the residual intera
tion by a factor ofg52.5 ~which is equivalent to increasing
the density of states! the strength distribution displays a form
as shown in the lowest panel of Fig. 6. This strength rema
largely localized in energy but the distribution of the corr
spondingSF(n) ~Fig. 6! does not deviate much from th
Porter-Thomas~PT! distribution @29# P(s)5(2ps)21/2exp
(2s/2) characteristic of GOE, even though correlatio
among the matrix elements are the same as before. Inte
ingly, even here the larger transitions are located in their o
small minima inr(E). Further increase of the multiplicatio
factor may again produce some transitions that are more
lective than those allowed by PT. In particular, starting fro
values;4 some new strong collective transitions appear
the upper edge of the whole spectrum.

To illustrate statistics of the transition strength versus
distribution we use a measure introduced in Ref.@30#. Con-
sequently, for all the cases considered above we calculate
total numberN of transitions of magnitude smaller than
given threshold valueSth , as a function ofSth . Since the
number of large components relative to the small ones is
primary interest in the present study and in order to set
same scale when comparing different cases we, in addit
in each case independently, divide all the transitionsS(n) by
the corresponding maximum value ofS(n). After that
Smax(n)51 in each case. Consistently, the RMT limit of th
measure is then drawn from the cummulative PT distribut
and this limit is indicated by the solid line in Fig. 7. In th
log-log scale this limit develops a long straight line segm
with the slope of 0.5, which reflects the dominant role of t
preexponential factor (s21/2) in PT distribution at smaller
transitions. As can be seen from this figure, theg52.5 case
is very close to this limit. But, interestingly, eveng50.35
tends to the same slope when probing the region of sm
transitions, which means that such transitions are consis
with GOE. Only the unperturbed case is distinct in th
sense.

Finally, Fig. 8 shows the transition strength distribution
the ‘‘constituent’’ single-phonon modes specified by Eq
~11! and ~12!, respectively, in their own 1p1h sectors and
the same model space of single-particle states is used. T
are 28 ~single! charge exchangeJp512 and 25 Jp511

1p1h states in this space. As before, theg factors reflect the
strength of the residual interaction relative to the origin

nd

e
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one. The results collected in this figure provide further e
dence that collectivity observed on the 2p2h level is not
accidental. It can always be traced back to collectivity of
corresponding single-phonon modes in their own subspa
Consistently with our previous discussion, this corresp
dence cannot, however, be expressed simply in terms of
portionality. For instance, the single-phonon transitions
g50.35 are significantly weaker than forg51 while the
opposite applies to the resulting two-phonon mode. Rec
study of Ref.@31#, even though based on a much simp
model, also shows that characteristics of the two-pho
mode ~double giant dipole! are much more sensitive to th
detailed form of the Hamiltonian than those of the cor
sponding single-phonon modes.

Taken together, a real collectivity, by which we mean
transition stronger than those generated by the mean fiel
a very subtle effect and is not a generic property of the co
plex spectra. Its appearance, as it happens for one of
components of theJp502 DCX excitations considered here
involves several elements like correlations among the ma

FIG. 7. The total numberN of transitions of given strength
~properly rescaled, see text! below a threshold valueSth . The open
crosses refer to the unperturbed case (g50), thick dots to g
50.35, open squares tog50.7, filled squares tog51, and open
triangles tog52.5. The solid line represents the same quantity
termined from a Porter-Thomas distribution.
nd

s.

.

.

-

e
s.
-
o-
r

nt
r
n

-

is
-

he

ix

elements, nonuniformities in the distribution of states an
proper matching of the interaction strength to an initial~un-
perturbed! location of the transition strength relative to th
scale of nonuniformities in the distribution of states.
present, a collective state is then located in the region
more regular dynamics characterized by lower informat
entropy, more sizable deviations from GOE of the level flu
tuations and local minima in the density of states. This la
effect can thus potentially be used in experimental studie
an extra criterion to detect collectivity. We also would like
point out that these aspects of collectivity parallel an ana
gous property hypothesized for living organisms@32# and
stating that collectivity is a phenomenon occurring at t
border between chaos and regularity.
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